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NUMERICAL APPROACH TO NON-SPHERICAL VAPOUR 
BUBBLE DYNAMICS 
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Australian Atomic Energy Commission Research Establishment, Lucas Heights 

(Received 27 February 1973 and in revised form 1 June 1973) 

Ahstrati-An explicit finite difference analysis has been applied to the growth and collapse of a vapour 
bubble in sub-cooled water. It is assumed that only mass transfer across the liquid-vapour interface is 
important and that heat transfer can be neglected. The results of this computational analysis are compared 
with experimental results from the literature and shown to be in good agreement at sub-cooling of 1 C 
and 10 C. 

For these cxperlmcntal condkons the anal! his shows thal the bubble grow\ in a roughly spherical fashion 
but collapses in highly non-<pherical manner. 
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NOMENCLATURE 

diameter of nucleation site hole : 
thickness of the annular region occu- 
pied by the liquid at the base of the 
bubble : 
elemental bubble surface area : 
area of liquid film at base of bubble: 
surface area of the liquid film at the 
base of the bubble : 
constant equation (15) (B = 4.89 x 
lo3 when p* lb/in3 and TLKo used): 
constant equation (10) : 
heat capacity of liquid : 
constant equation (15) (D = 3.945 x 
lo3 when p* lb/in3 and TLKo used): 
heat flux across nucleation site surface : 
gravitational constant : 
thickness of liquid film at the edge and 
base of the bubble : 
integer indicating number of elapsed 
time steps each of At : 
numerical identity for position of 
element points around the bubble 
surface : 
thermal conductivity of liquid : 
vapour mass : 
change in mass from liquid film over 

N, n, 
P 
Pi1 

rd, 
Td. 

RI. 
R1, 
R 

Ro, 
47, 
s, 

t, 
At, 

TL~ 
T*, 
AT,, 

time At: 
number of elements : 
vapour pressure : 
saturation pressure at temperature 
TL ; 
liquid pressure : 
liquid pressure at the free surface ; 
liquid pressure at nucleation site ; 
radial distance from centre of local 
bubble radius to point in liquid ; 
dried out radius at base of bubble: 
new dried out radius at base of bubble 
after time At ; 
first principal radius defined in 
second principal radius I Fig. 1; 
equivalent radius of curvature at a 
point on the bubble surface ; 
initial equivalent radius ; 
gas constant for the vapour ; 
length of sloping annular region occu- 
pied by the liquid film (see Fig. 3) ; 
time from start of bubble growth : 
time increment in the numerical pro- 
ted ure : 
liquid temperature : 
saturation temperature ; 
change in liquid temperature ; 
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bulk liquid temperature; and energy equations for the liquid and vapour 
temperature of the nucleation site be solved simultaneously and coupled to mass 
solid wall ; and energy exchange across the interface. 
bubble wall velocity ; 
bubble edge velocity : 
bubble volume ; 
volume of nucleation site hole ; 
volume of liquid evaporated from 
liquid film in time At ; 
horizontal coordinate from centre of 
nucleation site ; 
horizontal bubble radius at nucleation 
site surface ; 
vertical distanLx from nucleation site 
surface wall : 
thermal diffusivity of liquid ; 
friction force at edge of bubble ; 
mass-transfer correction factor : 
mass-transfer coefficient ; 
steady state mass-transfer coefficient ; 
mean mass-transfer coefficient : 
latent heat of vaporization ; 
liquid viscosity ; 
saturation density at temperature T; 
vapour density : 
liquid density ; 
liquid surface tension ; 
angle of propagation of an element 
point ; 
Jacobnumber = pLCL(TL - T*)/p*;l. 

In practice, to obtain any analytical solution, 
several simplifying assumptions are usually 
made. The most common one is that the bubble 
grows and collapses in a spherically symmetrical 
fashion. This assumption is made in the analyses 
of Forster and Zuber [2] and PIesset and Zwick 
[3]. The validity of the simplification has. how- 
ever, been questioned by several experimental- 
ists : both Hammitt et al. [4,15] and Barclay et al. 
[5] have observed highly nonspherical collapse, 
usually in regions of large pressure gradients. 
while Johnson et al. [6] have observed a variety 
of bubble shapes during bubble growth. 

In an attempt to shed some light on this com- 
plex problem we have developed an explicit 
finite difference marching technique, which obvi- 
ates the necessity of assuming spherical growth. 
We assume. however, that the mass Ir:msfer 
component of the energy exchange across liquid 
vapour interface is the predominant mecha- 
nism and therefore heat transfer is ignored. The 
results obtained from this technique are com- 
pared to some experimental data published by 
Yessin and Jeffers [7] who studied the growth 
of bubbles from a nucleation site on a transiently 
heated metal strip. 

2. THEORETICAL CONSIDERATIONS 

The liquid-vapour interface is represented by 
a set of two dimensional axisymmetric elements 
as illustrated by Figs. la and lb. We make the 
following assumptions : 

Subscript 
0, initial conditions. 

1. INTRODUCTION 

THE GROWTH and collapse of vapour bubbles in 
a liquid has been studied by many investigators, 
both experimentally and theoretically for many 
years. Rayleigh [l] in 1917 computed the pres- 
sure developed when a spherical cavity collapsed 
inwardly due to an external pressure field. 
Rayleigh’s solution to the problem considered 
only the inertia of the liquid to be important and 
he neglected heat and mass transfer across the 
bubble interface. A complete solution to the 
problem requires that the continuity, momentum 

(1) 
(2) 

(3) 

(4) 

(51 

The liquid is incompressible. 
Energy exchange across the liquid-vapour 
interface is dominated by mass transfer. 
The surface topology of the bubble is charac- 
terised by a local radius of curvature which 
is the equivalent of the principal radii of 
curvature. 
The bubble interior is assumed to be uniform 
in both temperature and vapour density. 
obeying the equation of state. 
The liquid is static, having a one-dimensional 
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temperature and pressure distribution, hence 
the bubble is symmetrical about its vertical 
axis as in a static pool boiler. 

dR( 
dt 

- 
i) 
i) 

- 

(b) Element nototion 

FIG. 1. Elemental representation of liquid-vapour interface. 

(6) The initial shape of the bubble is hemi- 
spherical. 

2.1 Initial conditions 
Figure la shows the bubble surface equally 

divided by a number of element points. Initially 
the bubble is in static equilibrium with the 
surrounding liquid and the initial conditions 
are given by 

Q(T, ,) - P,, = 2a/R, (1) 

from which the initial volume, vapour mass, 
density and surface area of each element can be 
calculated. We assume in equation (1) that there 

is no dissolved gas present in the bubble which 
is hemispherical and although these conditions 
are not strictly necessary they do simplify the 
initial setting of conditions prior to bubble 
growth. When the bubble grows, it may not 
always be spherical so its shape is character&d 
by the two principal radii of curvature R, and 
R2. These are illustrated in Fig. lb but both will 
vary with time and from point to point around 
the bubble surface. 

It is convenient to define an equivalent radius 
R such that the surface tension pressure across 
any elemental surface is the same as it would 
be across an equivalent sphere of radius R ; i.e. 
we define R by letting 

20/R = o{l/R, -t l/R,}. (2) 

This value of R can then be used in the modified 
Rayleigh equation as follows 

PY - pr. 

PL 

(3) 

applying to all points on the bubble surface but 
slightly modified for the nth element point 
which moves along the solid nucleation site 
wall. Here a resistance force related to the magni- 
tude of the periphery of the nth element and the 
surface roughness of the solid wall must be 
included in the brackets enclosing the surface 
tension and viscous forces. The extra term is 
/$‘2nR(n) where /? is the friction force per unit 
width of liquid displaced along the nucleation 
site surface (see for example J. J. Bikerman [8]). 

The bubble can now be made to grow or 
collapse by any external disturbance. In this 
study we have imposed a sudden temperature 
disturbance by letting the temperature of the 
nucleation surface rise above the equilibrium 
liquid temperature at a rate equal to that mea- 
sured by Yessin and Jeffers [7] during their 
experiments. At time t therefore, the temperature 
distribution in the liquid is given by 
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which is a solution to the heat conduction equa- 
tion given by Carslaw and Jaeger 191. This 
temperature field will induce a corresponding 
change in the saturation vapour density and 
hence give rise to a potential to exchange mass 
across the liquid vapour interface. The incre- 
mental change of vapour mass will now increase 
the vapour pressure in the bubble which will 
grow according to the modified Rayleigh equa- 
tion (3). It is important to note that although we 
assume the mass exchange across the bubble 
interface to be determined from local conditions. 
the driving pressure P, is obtained by smearing 
out the incremental mass increase (or decrease) 
over the whole volume of the bubble. 

2.2 Explicitfinite difirence “marching” 
technique 

The numerical procedure is carried out in a 
step by step calculation of the bubble growth in 
the follo~ng way : 

1. Set initial conditions with N number of 
points distributed uniformly around the bubble 
surface. 

2. Calculate spatial temperature distribution 
after an incremental time step At. 

3. Using the average temperature between 
the jth and 0’ + 1) points calculate the mass 
exchanged across the elemental strip bounded 
by j and j f 1 in time interval At. 

4. Sum the total mass transfer across the 
whole of the bubble interface including that 
transferred at the base of the bubble (6m,), with 
the mass already in the bubble m so that the total 
mass at the ith time increment is, 

40 ftot) = j$, MA + %. (5) 

Calculate new Py due to mass transfer, 

P;(i) = p,(i - I)-. 
m(i - I wt) 

(61 

5. Calculate the equivalent radius of curvature 
at each element point from R, and R, such that 

R(i. j) = 2 
’ 

(71 

where R, is given by the equation of the circle 
which passes through points j - 1, j and j + 1, 
and Rz is the other principal radius which 
passes through the point j, the centre of R, 
and the bubble axis. 

6. Movement of the element points over the 
next step At is obtained from the modified 
Rayleigh equation (3) in which d2R(i, j)/dt’ is 
calculated. The distance moved by an element 
point along RL therefore is 

where dR(i - l,j)/dt is the velocity at time f 
and not at t + At, i being the time dependent 
coordinate in the element point array. 

7. Sum the new elemental volume 

and modify P;(i) to 

pv(iJ = pv(il Ui - NW, 
Wtot) 

8. The new liquid-vapour boundary is given 
by the new element point positions, which are 
redistributed to maintain uniform element size. 

9. Repeat the numerical procedure from step 
(21 increasing r by At each time round. 

2.3 Mass transfer 
Transfer of vapour mass across an elemental 

area is illustrated in Fig. 2 and can be described 
by kinetic theory which gives the evaporation 
rate as 
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(p*rJ - P”):~~ (10) 

FIG. 2. Mass transfer across the liquid-vapor interlace 
elcmcnta. 

where r] is an accommodation coefficient 
required to correct the theoretical result which 
assumes perfect evaporation (or condensation) 
at the designated bulk liquid temperature and 
vapour density conditions. The evaporation 
process is extremely complex and the energy 
exchange during evaporation results not only 
in the need for q which may vary, but also leads 
to a significant change in the temperature TL 
at the interface, with the consequence that the 
rate of mass transfer is considerably reduced 
during evaporation, Hickman [lo]. Although 
the behaviour of the accommodation coefficient 
in vapour bubble dynamics is still obscure, the 
dynamic behaviour of tl postulated by Hickman 
in which the initial value of tf = 1-O reduces to 
a much lower steady state value in a few milli- 
seconds. would seem applicable. Whether or not 

the behaviour of q during evaporation is the 
same as that for condensation is also obscure ; 
we assume here that it is. The magnitude of the 
steady state mass-transfer coefficient q. depends 
largely on the Jacob number N, and for water it 
lies within the range 10-2-S x lo-‘, having its 
lowest value at highest superheat conditions 
(Theofanous et al. [ 121). Alty [ 1 l] has found a 
value of q. = 4 x lo-’ for pure water evaporat- 
ing into a vacuum. 

Clearly the success of the theoretical approach 
described here is greatly influenced by the value 
of q used in equation (lo), although it has been 
shown by Theofanous et al. [12] that a mean 
mass-transfer coefficient 4 can be successfully 
employed. This is particularly true for bubbles 
having rapid growth rate, and is the technique 
employed here. 

Calculation of the local interfacial liquid 
temperature TL and that of local vapour 
saturation density p*(T”) present serious dif- 
ficulties to the element method. This is because 
the precise nature of the interfacial thermal 
boundary profile must be obtained to facilitate 
the temperature drop calculation. Even in 
spherically. symmetrical theoretical methods 
this problem is quite formidable and cannot be 
solved independently of the complete solution 
to the bubble growth, but it becomes even more 
intractable when the local liquid temperature 
and radius of curvature are not simply related 
to the vapour pressure within the bubble. For 
this reason we have been forced to employ the 
technique of using the local bulk liquid tempera- 
ture condition (T’ ,) and p*(T, ,) in equation (10) 
and thus the accommodation coefficient q is 
now replaced by some factor c which will 
account for both the mean interfacial resistance 
and mean temperature drop. 

For points around the liquid vapour inter- 
face therefore we use 

fP*(T,J - PJ4.A. (11) 

This simplification however can also be 
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justified for highly sub-cooled bubble growth 
since both rise and fall of the interfacial liquid 
temperature will occur due to the effects of 
evaporation and condensation energy exchange, 
and these will be compensatory to some degree. 
For the case of evaporation from a liquid film 
at the base of the bubble, however, the boundary 
conditions do permit a solution to the interfacial 
temperature drop problem. 

2.4 Evaporationfrom the base of the bubble 
Evaporation from a film of liquid at the base 

of a hemispherical or oblate bubble has been 
shown by Cooper and Lloyd [13] to be an 
important source of mass to the bubble. It is a 
simple matter to simulate this effect in the finite 
difference procedure, although the analytical 
solution in [ 131, based on the spherical bubble 
growth approximation in [3] may also be 
appropriate. We prefer to calculate the liquid 
film evaporation numerically. Figure 3 shows 
diagrammatically the film under the bubble and 
the dried out portion. From [13] the height of 
this microlayer h estimated from viscous boun- 
dary layer build up considerations is given by 

h = C(v@, (12) 

and the value of C has been estimated in [ 71 and 
[ 131 to be approximately 08. Assuming that the 
thickness of the thermal boundary layer is the 
mean height of the microlayer (h/Z) we take the 
energy exchange across the liquid to vapour 
interface to be given by 

dm,= q$(T, - T,). 
dt . 

(13) 

In addition we take. as before, the rate of 
evaporation (or condensation) to be given by 

where in this case we use the value of TL which 
satisfies equations ( 13) or (14) simultaneously. 

T. J. LEDWIDGE 

By using an integrated form of the Clausius- 
Clapeyron equation to give 

D 
p*( TL) = - exp ( - BIT,) . 

T 
(15) 

Liqulcl film 

ot film evoporoted InAt 

c c 
% 4 

FIG.?. Liquid film exporation at base of bubble 

then we may, from either (13) or (14) calculate 
the rate of mass transfer across the interface. 
This procedure is only valid if Tw and hence h 
and A, are varying slowly with time compared 
to the rate at which the bubble grows. For the 
results presented in this paper the temperature 
of the wall changes by about 10 per cent while 
in same time the bubble volume increases many 
times. The use of this simplification therefore 
seems to be reasonable. 

Again following Cooper and Lloyd [ 131 and 
taking the liquid microlayer to be in the form 
of frustrum of a cone of maximum height h, it is 
an easy matter to calculate the change in 
geometry of this frustrum by relating its 
change in volume to the amount of mass 
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evaporated by 

where the geometry is as defined in Fig. 3. 

3. LIQUID ABBE DRAGON 

The one dimensional temperature distri- 
bution in a liquid surrounding a transiently 
heated surface, derived from the heat conduction 
equation is given by equation (4) from Carslaw 
and Jaeger [9]. When the heat flux F, rather 
than surface temperature T. is known, an 
alternative solution also given in [9f is 

AT,@, t) = % 
1 

cat/n)* exp ( -X*/4&) 

- & erfc (x/2@@) 
I 

. (16) 

Since both of these forms are derived from heat 
conduction considerations alone, the calculated 
liquid temperature distribution becomes in- 
creasingly ~repr~tative as t increases due 
to the increasing effect of thermal convection. 
Furthermore, in reality the temperature distri- 
bution in liquid above a nucleation site will also 
be affected by disturbances from adjacent active 
nucleation sites and by the bubble itself. 

The problem of predicting temperature distri- 
butions during steady boiling is insoluble by 
analytical methods and no attempt to solve it 
numerically has been made in this study. 
However, Marcus and Dropkin [14] have 
attempted an empirical ch~a~~tion of the 
steady boiling temperature protile dependent 
upon the heat flux at the solid surface, and this 
would appear to be applicable to finite difference 
bubble growth calculations for the steady 
boiling situation. 

4. THE NUMERICAL PROCEDURES 

4.1 Initial conditions : number of elements 
As stated before, initial conditions depend 

largely upon the temperature of the nucleation 

site at the start of bubble growth. Thus the size 
of the site can be estimated from equation (1) 
when the site temperature at bubble inception is 
known. Al~ough not strictly necessary, the 
assumption that the bubble is initially hemi- 
spherical in static equilibrium leads to a very 
simple initial condition. Element points which 
mark the annular element boundaries are 
uniformly distributed over the previously pre- 
scribed bubble shape or radius. Since we consider 
only the case of axial symmetry, the element 
points are distributed fromj = 1 at the top of the 
bubble to j = N at the edge of the hole as 
shown in Fig. la. The number of element points 
IN) is optional and although it may appear more 
accurate to have a large number of element 
points (i.e. small elements), there are certain 
difficulties which preclude this, namely, as with 
all numerical procedures we are limited by both 
computer accuracy and economy. If the elements 
are small the small difference in mass transfer 
across each element may be incorrectly com- 
puted due to computer round off errors. 
Differences in Sm of the order 1O’2o are possible 
in this type of procedure so it can be seen that 
even with double precision computation, trun- 
cation errors with small element calculations 
may be appreciable. The desirability of limiting 
computation time provides a further incentive 
for limiting the number of element points. 

From our computations a suitable range for 
N would be between 10 and 20 depending upon 
the initial size of the bubble. However the 
problem associated with having too few elements 
(i.e. inaccurate representation of bubble topo- 
logy) is greatly reduced by the introduction of a 
numerical surface movement of element points 
to prevent bunching or non-equal element 
spacing during computation. This is a simple 
mathematical technique to ensure that after 
each time step the independent movement of 
elements does not result in unequal spacing. It is 
achieved by rotating each element point about its 
local radius of curvature R,(i,n in such a 
direction that the final distance between each 
element is equal&xl. 
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4.2 ~u~er~ca~ stability 
As with many numerical solutions stability 

of the computations is critically affected by the 
mesh size, i.e. elemental size and magnitude of 
the time step. The element size effect has been 
discussed in 4.1 and now we consider the time 
step, again with the intention of obtaining 
optimum computational efliciency and 
numerical stability. The time step is calculated 
here as a function of element point acceleration, 
since equation (3) is most sensitive to the size 
of the time step. The criterion we have success- 
fully used is 

for d2R -@” < 103, At = 5 x IO-ss 

for d2R dt2 > 10’. Ar = 

where R is in cm. The time step increases as 
acceleration d2R/dt2 decreases ~~tai~g 
computational effkiency. This function produces 
a time step magnitude in the order of 10T9 s 
during maximum growth acceleration periods, 
usually in the initial stages of bubbie growth, and 
was arrived at by running the computer pro- 
gram with several time step functions until 
stability was reached. 

5. EXPERlMENTAL AND FINITE DIFFERENCE 
COMP.kRISON 

Bubble growth from a nucleation site on a 
transiently heated stainless steel strip has been 
measured by Yessin and Jeffers f 71. Two of their 
results for liquid temperatures 90°C and 99°C at 
atmospheric pressure are considered here. The 
experimental conditions in both cases have 

been employed in the finite element computation 
and are given in Table 1. along with the appro- 
priate C value which was selected to give the best 
agreement between the ex~r~ental and com- 
puted results. A set of ten elements represents 
the bubble surface in these numerical results 
and the liquid temperature distribution is given 
as a function of the measured temperature of the 
heated surface TW by equation (4). 

‘OQc 
L ! 

.i . 

FIG. 4. Bubble growth IL = 9O'C. 

5.1.1 ~~~f~grow~~ resuh. Figure 4 shows the 
numerical bubble growth with and without mass 

?L 
(“C) 

90 
99 

--- 

Table 1. Releuant expertmentai conditions [7] 
- 

Heated surface Nucleation Wall temperature 
temperature at site rise function 
start of bubble diameter AT (“Cl 
growth PC) fcml 

116 3.32 x 1O-4 62 x 105 
129 1.38 x 1O-J 3.67 x 104t 

_-_---- 

--- -____-- 
Mass transfer 

factor 

5-o x iO-L 
3.5 x lo-” 

---l__ --- 
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transfer from the film of liquid beneath the 
bubble for TL, = 90°C compared with that 
obtained experimentally. A similar comparison 
for TL, = 99-C is shown in Fig. 5. Agreement 
between the experimental and numerical results 
with film evaporation is good over the range of 
bubble growths compared, although this is 

in results with time. Good agreement in the 
bubble growth comparison gives a degree of 
confidence in the many other numerical results 
such as volumetric and vapour mass growth 
rates, dry out radius and liquid film temperature, 
bubble pressure ‘and acoustic emission in the 
liquid above the bubble. Instantaneous accelera- 

FIG. 5. Bubble growth TL = 99°C. 

largely due to the arbitrary selection of a value 
for c in equation (11). Interference from other 
nucleating bubbles when t > O-5 x 10m3 
seconds from the start of bubble growth was a 
limitation in the experimental measurement, but 
according to photographic evidence in [7] 
interference from other bubbles may well have 
started earlier. In the numerical result, we must 
recognise that the activity of other sites and the 
increasing effect of thermal convection sets a 
similar time limit for computational accuracy 
and this accounts for the increasing discrepancy 

Time, ps 

FIG. 6. Computed bubble volume and vapour mass with 
time. 

tion, velocity and local radius of curvature for 
the bubble are also known but are more dficult 
to summarize here. Increase in vapour mass 
and bubble volume with time for T, = 90°C 
and 99°C are plotted in Fig. 6. The ratio of the 
dryout radius and bubble edge radius @i/x,) is 
plotted in Fig. 7 for the two bulk liquid tempera- 
tures, and the computed results for the drop in 
liquid film temperature are shown in Fig. 8. 
Variation in computed bubble vapour pressure 
Py with time, for the two liquid temperatures is 
shown in Fig. 9 normalized to the liquid surface 
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I 
‘00 200 300 

Time, ps 

FIG. 7. Ratio of dried out radius to bubble edge radius with 

time. 

FIG. 8. Cornouted change in liquid film temperature with 

time. 

T. J. LEDWIDGE 

pressure. The bubble is seen to grow in a 
spherical manner in the computed results of 
Fig. 10a for TL D = 90°C and lob for TL m = 99°C. 
The bubble shape on collapse however is more 
complicated and worthy of special explanation. 

0 51 
0 loo 260 300 

Time, ps 

FIG. 9. Computed variation in bubble vapour pressure with 
time 

5.1.2 Bubble shape during collapse. To study 
the shape of the bubble during total collapse a 
computation was carried out with the same 
condition as for the TL, = 90°C but with no 
base evaporation (see Fig. 4) and with the 
modification that after 2-O x lob4 s growth, the 
liquid temperature became equal to the bulk 
conditions T,_ = 90°C everywhere. Thus the 
event of convection cooling which would pre- 
cipitate collapse in the real case was simulated 
in a crude way. The resulting bubble shape 
during collapse is extremely interesting. Figure 
11 shows that the shape of the bubble becomes 
highly non-spherical near to the completion of 
the collapse phase, and in the centre region the 
downward hquid velocity becomes very high. 
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The unusual shape of the bubble does however 
lead to an increasingly inaccurate numerical 
result due to the fact that the radius R( 1) at the 

0.6 (a) ra=90Y 

0 

x, mm 

Y. mm 

FIG. IO. Bubble shape during growth. 

centre of the bubble is over estimated. The error 
involved therefore has the effect of under 
estimating the collapse velocity in that region. 
This result is in agreement with Hammitt 
[4, 151 and Barclay, Ledwidge and Cornfield [S] 
who have studied the damage caused by 
collapsing vapour bubblesand observed highly 
non-spherical bubble shapes. Nammitt con- 
cludes that an enlarged pit forms at the 
nucleation site due to the impulse of a high 
velocity liquid jet produced during this type of 
bubble collapse : we see the formation of this jet 
in Fig. 11. The acoustic pressure in the liquid 

above the bubble is also greatly affected by the 
central concavity during collapse and is found 
numerically to display totally different 
characteristics to the noise during bubble 
growth. 

FIG. It. Computed bubble shape during collapse, TL, = 
90°C (no basctvaporation). 

5.2 Liquid pressure above the bubble 
The water pressure at approximately 10 mm 

directly above the nucleation site was calculated 
during the bubble growth computation, and 
this result provides information on how the 
bubble noise relates to this type of growth or 
collapse. Figure 12 shows this result for the 
90°C and 99°C bulk liquid temperatures, and 
although the pressure is plotted on a lo~th~c 
scale the large characteristic difference in noise 

due to different subcoohng conditions can be 
seen easily. 

The liquid acoustic pressure derived from the 
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Rayleigh equation (3) is given by 

X {I-(!+)‘71 (17) 

noise characteristic of this type of collapse. 
Until the start of collapse the acoustic pressure 
is characteristically the same as that shown for 
T = 30°C in Fig. 12. In the Fig. 13 result, 
h%ever an arbitrary step change in liquid 
temperature brings about collapse after 200 ps 
and although the overall result may be some- 

where APy = Py - P, - 2o,/R,j = 1 ,. During col- 

lapse it is possible for any part of the bubble 
surface to become concave to the liquid with the 

7 

__I 
0 100 200 300 

Time, ,uf 

FIG. 12. Computed bubble grow& noise directly above the 
nucleation site. 

result that the local acoustic emission will be 
greatly affected. As the surface becomes con- 
cave R + a and R/r -+ 1.0, therefore APL --+ AP,, 
and thus the upper limit of such a peak would be 
APy and not infinity, as would occur during the 
very last stages of bubble collapse according to 
Rayleigh’s analysis. The collapsing bubble shape 
does indeed show concavity in its later stages 
(Fig. 11) a’nd by plotting the liquid pressure 
above the bubble, as in Fig. 13 we see the bubble 

- 

J 

FIG. 13. Bubble noise computed for growrh and collapse 
stages T, = WC. 

what artificial, it does serve ta illustrate the 
different type of noise signal during the two 
different phases of bubble life. It follows that in 
the case when the bubble wall oscilIates from a 
concave to a convex shape one might expect to 
see a series of bubble noise peaks reaching a 
maximum pressure level of 

LIP ,=P,-PL-h/R. 

6. CONCLUSIONS 

Good agreement between experimental and 
computed bubble growth in water bulk tempera- 
tures of 90°C and 99°C at atmospheric pressure. 
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has shown that the finite difference model can 
successfully represent vapour bubble dynamics 
under the prescribed experimental conditions. 

The technique of matching one experimentally 
determined parameter by a corresponding 
numerical result has been shown to be a useful 
way of determining theoretically, through the 
finite difference method, a range of other 
parameters for which experimental measure- 
ment is too difhcult. A further example of this 
technique has already been carried out (Guy and 
Ledwidge [16]), where the noise measured 
during bubble growth was compared with that 
computed numerically. The importance of em- 
ploying the correct variable mass-transfer co- 
eflicient or a mean value which accurately 
represents a mean of the initially transient 
coefficient is emphasized. As yet there is no way 
of theoretically determining a value for q(r) or q 
but q may be found by trial and error. We note 
with interest the fact that in our numerical results 
the most appropriate values of 6 used in the mass 
transfer equation (11) were 3.5 x 10S2 for 
T L = 99°C and 5 x 10m2 for TL, = !WC, which 
compares with Theofanous et al. [12] who 
found in their numerical results that the most 
appropriate value for the mean mass-transfer 
accommodation coefficient lay between 10S2 
and 5 x lo-‘. As pointed out earlier ij is 
different to the factor 6 which is designed to 
account for interfacial liquid temperature 
changesaswellasembracingtheaccommodation 
coefficient. It can be argued therefore that in 
sub-cooled bubble growth, the increase in 
liquid interfacial temperature on the con- 
densation surface balances to some extent the 
decrease in temperature at the evaporation 
surface. 

The numerical computations also show that 
evaporation from the liquid film at the base of 
the bubble cannot be neglected particularly 

when bubble growth becomes well established. 
Indeed, for the highly sub-cooled bubbk growth 
after about 100 PLS growth time, the continued 
growth of the bubble relies entirely upon 
evaporation from the base of the bubble. It is 
anticipated that future development of this 
method of vapour bubble analysis will allow 
accurate simulation of temperature fluctuations 
at the heated surface T,, thus providing greatei 
understanding of several heat transfer problems 
at present under study, e.g. burnout on nuclear 
fuel elements. 
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APPROCHE NUMERIOUE DE LA DYNAMIQUE D’UNE BULLE DE VAPEUR NON SPHERIOUE 

R&m&-Une analyse explicite aux differences tinies est appliqued a la croissance et a la disparition dune 
bulle de vapeur dans de I’eau sous-refroidie. On suppose que seul est important ie transfert de masse a 
travers I’interface liquide-vapeur et que le transfert thermique peut are n&glige. Les r&ultats de ce calcul 
compares aux don&s de I’exp&ience, sent en bon accord pour da sous-refroidissements de 1°C et 10°C. 

Pour ces conditions experimentales les analyses montrent que les bulles croissent de faGon a peu prts 
sphtriques mais d&g&rent de facon tres eloignn& de la forme spherique. 

EINE NUMERISCHE N&IERUNG ZUR NICHT-SPHARISCHEN BLASENDYNAMIK 

Z~atuRg--Eswur&einexplizitesDifferenzenverfahrenangewandtzur&rechnungvonWachstum 
und KoIIaps eina DampfbIaae in unterkt&Item Wasaer. Dahei wurde angenommeu, dam nur der Massen- 
transport iikr die FIUaaigkeita-Dampf-Grenze bedeutsam ist, wRhremi der Wi%rtneiRrergang vema&&aigt 
werden kann. Die Ergebmsse diesel reohueriaehen Untersuehnng wet&n mit exp&nenteUen Ergehnissen 
aus der L.iteratur verglichen und xeigen gute breinstimmung hei 1 K und 10 K UnterkUhhmg. 

Fiir die experimentellen Bedingungen zeigt die Untersuchung, dass die Blase in angen&hert kugeliger 
Form wlichst, aher in stark asphtiseher Gestalt zusammenbcicht . 

YlICJIEHHbIfl AHAJIIMB fiHHAM5H-W HECQEPWIECKBX 
IIY3bIPEm I-IAPA 

AnnoTBqHlf-%tian botte4uo-pa3trocTuan cxeMa ncnojIbayeTcft ;Iart ananu3a pocra u 
cn~~~titifi ny3btpet4 napa B HenorpeTot4 ~K~AK~CT~I (Bone). Yqtrrbmaercn ro.nbKo nonepesttbtfi 
neperioc MacehI gepea noaepxnocTb pa3zena amu~nocrb-nap)>, a TennooS5reHoiu npetie6peratoT. 
P33yJIbTaTbI 3TOl’O =iHCJWHHOFO aHaJIEl33 Cp3BHHEQIOTCfI C %KCll3JIHM3HT3JIbHbIMM ~PHHMMLI, 

ony6nnnosarinbrnin B rtuTepaType, nptmer cpanrteriue nonaaano xopomee cosna2zetine npn 
HeAOI-peBe OT 1% ,lO lo”c. 

j$IR paCCMaTpIiB3eMblX 3KCHL?PLIMeHTtIJlbHbIX J’C.?OBSfi LiHaJIB3 IlOK33hIBaeT, YTO POCT 

ny3bIpefi MO?iUiO npe6nameHHo I-IpenCTaBMTb C llOMOlL(bW C~epIl’4eCKOti MORt?JIH, a CJIMFIIHAe 

nyabtpefi 3 3nctuetI creneun rtec*epnstio. 


