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Abstract—An explicit finite difference analysis has been applied to the growth and collapse of a vapour
bubble in sub-cooled water. It is assumed that only mass transfer across the liquid—vapour interface is
important and that heat transfer can be neglected. The results of this computational analysis are compared
with experimental results from the literature and shown to be in good agreement at sub-cooling of 1 C
and 10 C.
For thesc cxperimental conditions the analy sis shows that the bubble grows in a roughly sphencal fashion
but collapses in highly non-spherical manner.

NOMENCLATURE time At:
diameter of nucleation site hole: N, n, number of elements:
thickness of the annular region occu- Py, vapour pressure ;
pied by the liquid at the base of the P?, saturation pressure at temperature
bubble: T.:
elemental bubble surface area: Py, liquid pressure:
area of liquid film at base of bubble: P, . liquid pressure at the free surface;
surface area of the liquid film at the P;o,  liquid pressure at nucleation site;
base of the bubble: r, radial distance from centre of local
constant equation (15) (B = 4-89 x bubble radius to point in liquid ;
10* when p* Ib/in® and T;K° used): A dried out radius at base of bubble:
constant equation (10): 1 new dried out radius at base of bubble
heat capacity of liquid : after time At;
constant equation (15) (D = 3-945 x R, first principal radius  (defined in
10 when p* 1b/in® and T;K" used): R,,  second principal radius {Fig. 1;
heat flux across nucleation site surface: R, equivalent radius of curvature at a
gravitational constant: point on the bubble surface ;
thickness of liquid film at the edge and Ry,  initial equivalent radius;
base of the bubble: R, gas constant for the vapour;
integer indicating number of elapsed S, length of sloping annular region occu-
time steps each of At: pied by the liquid film (see Fig. 3);
numerical identity for position of t, time from start of bubble growth;
element points around the bubble At, time increment in the numerical pro-
surface : cedure;
thermal conductivity of liquid : T, liquid temperature :
vapour mass: T*, saturation temperature ;
change in mass from liquid film over AT,, change in liquid temperature
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bulk liquid temperature ;
temperature of the nucleation site
solid wall ;

U, bubble wall velocity;

w bubble edge velocity :

V. bubble volume;

Ve volume of nucleation site hole ;

dV,, volume of liquid evaporated from
liquid film in time At;

X, horizontal coordinate from centre of
nucleation site;

X, horizontal bubble radius at nucleation
site surface ;

¥, vertical distance from nucleation site
surface wall:

a, thermal diffusivity of liquid ;

B, friction force at edge of bubble ;

- mass-transfer correction factor;

. mass-transfer coefficient ;

Nos steady state mass-transfer coefficient;

. mean mass-transfer coefficient :

Ay latent heat of vaporization;

U, liquid viscosity;

p*, saturation density at temperature T ;

v vapour density :

oL liquid density ;

o, liquid surface tension

@, angle of propagation of an element
point;

N, Jacobnumber = p,C, (T, — T*)/p*A.

Subscript
0, initial conditions.

1. INTRODUCTION

THE GROWTH and collapse of vapour bubbles in
a liquid has been studied by many investigators,
both experimentally and theoretically for many
years. Rayleigh {1] in 1917 computed the pres-
sure developed when a spherical cavity collapsed
inwardly due to an external pressure field.
Rayleigh’s solution to the probiem considered
only the inertia of the liquid to be important and
he neglected heat and mass transfer across the
bubble interface. A complete solution to the
problem requires that the continuity, momentum
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and energy equations for the liquid and vapour
be solved simultaneously and coupled to mass
and energy exchange across the interface.

In practice, to obtain any analytical solution,
several simplifying assumptions are usually
made. The most common one is that the bubble
grows and collapses in a spherically symmetrical
fashion. This assumption is made in the analyses
of Forster and Zuber [2] and Plesset and Zwick
[3]. The validity of the simplification has, how-
ever, been questioned by several experimental-
ists : both Hammitt et al. {4, 15] and Barclay et al.
[5] have observed highly nonspherical collapse,
usually in regions of large pressure gradients,
while Johnson et al. [6] have observed a variety
of bubble shapes during bubble growth.

In an attempt to shed some light on this com-
plex problem we have developed an explicit
finite difference marching technique, which obvi-
ates the necessity of assuming spherical growth.
We assume. however, that the mass transfer
component of the energy exchange across liquid
vapour interface is the predominant mecha-
nism and therefore heat transfer is ignored. The
results obtained from this technique are com-
pared to some experimental data published by
Yessin and Jeffers [7] who studied the growth
of bubbles from a nucleation site on a transiently
heated metal strip.

2. THEORETICAL CONSIDERATIONS
The liquid-vapour interface is represented by

a set of two dimensional axisymmetric elements

as illustrated by Figs. 1a and 1b. We make the

following assumptions:

(1) The liquid is incompressible.

{2) Energy exchange across the liquid—vapour
interface is dominated by mass transfer.

(3) The surface topology of the bubble is charac-
terised by a local radius of curvature which
is the equivalent of the principal radii of
curvature.

(4) The bubble interior is assumed to be uniform
in both temperature and vapour density.
obeying the equation of state.

(5) Theliquid is static, having a one-dimensional
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temperature and pressure distribution, hence
the bubble is symmetrical about its vertical
axis as in a static pool boiler.

Liquid 7
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A e

d*RGJ)  dR(Y))
o d# dr
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elegnenf ’ :/ i#a(r./)
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Liquid

(b} Element notation

FiG. 1. Elemental representation of liquid—vapour interface.

(6) The initial shape of the bubble is hemi-
spherical.

2.1 Initial conditions
Figure la shows the bubble surface equally
divided by a number of element points. Initially
the bubble is in static equilibrium with the
surrounding liquid and the initial conditions
are given by
Pf'(TL,,) — Py = 26/R, (n
from which the initial volume, vapour mass,

density and surface area of each element can be
calculated. We assume in equation (1) that there

is no dissolved gas present in the bubble which
is hemispherical and although these conditions
are not strictly necessary they do simplify the
initial setting of conditions prior to bubble
growth. When the bubble grows, it may not
always be spherical so its shape is characterised
by the two principal radii of curvature R, and
R,. These are illustrated in Fig. 1b but both will
vary with time and from point to point around
the bubble surface.

It is convenient to define an equivalent radius
R such that the surface tension pressure across
any elemental surface is the same as it would
be across an equivalent sphere of radius R ie.
we define R by letting

26/R = o{1/R, + 1/R,}. )

This value of R can then be used in the modified
Rayleigh equation as follows

Py - P,
PL

4R 3 (dR\? dR\ 1

— R4 2[828 2 bl

R e +2<dt) + ("”"dz)ka
(3)

applying to all points on the bubble surface but
slightly modified for the nth element point
which moves along the solid nucleation site
wall. Here a resistance force related to the magni-
tude of the periphery of the nth element and the
surface roughness of the solid wall must be
included in the brackets enclosing the surface
tension and viscous forces. The extra term is
B/2nR(n) where § is the friction force per unit
width of liguid displaced along the nucleation
site surface (see for example J. J. Bikerman [8]).
The bubble can now be made to grow or
collapse by any external disturbance. In this
study we have imposed a sudden temperature
disturbance by letting the temperature of the
nucleation surface rise above the equilibrium
liquid temperature at a rate equal to that mea-
sured by Yessin and Jeffers [7] during their
experiments. At time ¢ therefore, the temperature
distribution in the liquid is given by
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Tuy.t) = T, + (Tylt) — Ty)erfc (4;—{), (4)

which is a solution to the heat conduction equa-
tion given by Carslaw and Jaeger [9]. This
temperature field will induce a corresponding
change in the saturation vapour density and
hence give rise to a potential to exchange mass
across the liquid vapour interface. The incre-
mental change of vapour mass will now increase
the vapour pressure in the bubble which will
grow according to the modified Rayleigh equa-
tion (3). It is important to note that although we
assume the mass exchange across the bubble
interface to be determined from local conditions.
the driving pressure Py is obtained by smearing
out the incremental mass increase (or decrease)
over the whole volume of the bubble.

2.2 Explicit finite difference *‘marching”
technique
The numerical procedure is carried out in a
step by step calculation of the bubble growth in
the following way:

1. Set initial conditions with N number of
points distributed uniformly around the bubble
surface.

2. Calculate spatial temperature distribution
after an incremental time step At.

3. Using the average temperature between
the jth and (j + 1) points calculate the mass
exchanged across the elemental strip bounded
by jand j + 1 in time interval At.

4, Sum the total mass transfer across the
whole of the bubble interface including that
transferred at the base of the bubble (dm,), with
the mass already in the bubble m so that the total
mass at the ith time increment is,

N

m(i)((m) = Z m(l,j) + 5mf. (5)
i=1
Calculate new P, due to mass transfer,
Py(i) = Pyli — 1) —us0_ 6

M — 1)ton
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5. Calculate the equivalent radius of curvature
at each element point from R, and R, such that

Rn'.j)=2{ Ry(i.) Roli ) } (7

R, (i, j) + R,(i.)

where R, is given by the equation of the circle
which passes through pointsj — L jand j + 1,
and R, is the other principal radius which
passes through the point j, the centre of R,
and the bubble axis.

6. Movement of the element points over the
next step At is obtained from the modified
Rayleigh equation (3) in which d?R(i,j)de? is
calcutated. The distance moved by an element
point along R, therefore is

. dR(i — 1.j) Ld*RG,))
AR = [—E}’“‘B g

At] At ()

where dR(i — L.j)/dt is the velocity at time ¢

and not at ¢ + Ar, i being the time dependent -

coordinate in the element point array.
7. Sum the new elemental volume

N
Vil = 3 Vi) + Vh. (9)
i=

and modify Py(i) to

Wi — Ditot
Pyt = Py .

8. The new liquid-vapour boundary is given
by the new element point positions, which are
redistributed to maintain uniform element size.

9. Repeat the numerical procedure from step
(2) increasing t by At each time round.

2.3 Mass transfer

Transfer of vapour mass across an elemental
area is illustrated in Fig. 2 and can be described
by kinetic theory which gives the evaporation
rate as
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+
L (’—‘—;Tf) (*(T) — py) A, (10)
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FiG. 2. Mass transfer across the liquid-vapour interface
elements.

where 7 is an accommodation coefficient
required to correct the theoretical result which
assumes perfect evaporation (or condensation)
at the designated bulk liquid temperature and
vapour density conditions. The evaporation
process is extremely complex and the energy
exchange during evaporation results not only
in the need for n which may vary, but also leads
to a significant change in the temperature T,
at the interface, with the consequence that the
rate of mass transfer is considerably reduced
during evaporation, Hickman [10]. Although
the behaviour of the accommodation coefficient
in vapour bubble dynamics is still obscure, the
dynamic behaviour of n postulated by Hickman
in which the initial value of # = 1-0 reduces to
a much lower steady state value in a few milli-
seconds. would seem applicable. Whether or not

the behaviour of # during evaporation is the
same as that for condensation is also obscure;
we assume here that it is. The magnitude of the
steady state mass-transfer coefficient 5, depends
largely on the Jacob number N, and for water it
lies within the range 10~2-5 x 1072, having its
lowest value at highest superheat conditions
(Theofanous et al. {12]). Alty [11] has found a
value of 5, = 4 x 10~ 2 for pure water evaporat-
ing into a vacuum.

Clearly the success of the theoretical approach
described here is greatly influenced by the value
of n used in equation (10), although it has been
shown by Theofanous et al. [12] that a mean
mass-transfer coefficient # can be successfully
employed. This is particularly true for bubbles
having rapid growth rate, and is the technique
employed here.

Calculation of the local interfacial liquid
temperature T; and that of local vapour
saturation density p*(T;) present serious dif-
ficulties to the element method. This is because
the precise nature of the interfacial thermal
boundary profile must be obtained to facilitate
the temperature drop calculation. Even in
spherically ' symmetrical theoretical methods
this problem is quite formidable and cannot be
solved independently of the complete solution
to the bubble growth, but it becomes even more
intractable when the local liquid temperature
and radius of curvature are not simply related
to the vapour pressure within the bubble. For
this reason we have been forced to employ the
technique of using the local bulk liquid tempera-
ture condition(T;, _)and p*(T, _)in equation(10)
and thus the accommodation coefficient # is
now replaced by some factor { which will
account for both the mean interfacial resistance
and mean temperature drop.

For points around the liquid vapour inter-
face therefore we use

d R, T, \?
3’7”=§(—’2;%) (PMT ) —pv). 4. (11)

This simplification however can also be
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justified for highly sub-cooled bubble growth
since both rise and fall of the interfacial liquid
temperature will occur due to the effects of
evaporation and condensation energy exchangc
and these will be compensatory to some degree.
For the case of evaporation from a liquid film
at the base of the bubble, however, the boundary
conditions do permit a solution to the interfacial
temperature drop problem.

2.4 Evaporation from the base of the bubble
Evaporation from a film of liquid at the base
of a hemispherical or oblate bubble has been
shown by Cooper and Lloyd [13] to be an
important source of mass to the bubble. It is a
simple matter to simulate this effect in the finite
difference procedure, although the analytical
solution in [13], based on the spherical bubble
growth approximation in [3] may also be
appropriate. We prefer to calculate the liquid
film evaporation numerically. Figure 3 shows
diagrammatically the film under the bubble and
the dried out portion. From [13] the height of
this microlayer h estimated from viscous boun-
dary layer build up considerations is given by

h = Clv)*, {12)

and the value of C has been estimated in [7] and
[13] to be approximately 0-8. Assuming that the
thickness of the thermal boundary layer is the
mean height of the microlayer (#/2) we take the
energy exchange across the liquid to vapour
interface to be given by

dm; _
de

ZkA,,

(T, — Tw). (13)
In addition we take, as before, the rate of
evaporation (or condensation) to be given by

dm R, T, \*

—dt_f=C(—2g;z‘£> {pXT) —pyvid. (19
where in this case we use the value of T, which
satisfies equations (13) or (14) simultaneously.
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By using an integrated form of the Clausius—
Clapeyron equation to give

~XTN D PR T 1o
P Uiy) = = CXpl—Db/ly) {13)
T
Bubble surface
Liquid film
/
_Aolume of film evaporated nAt //
b
o ﬂ
I el
. |
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2
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1

X 2
e U a (B, e 20
FiG.3. Liquid film exporation at base of bubble.

then we may, from either (13) or (14) calculate
the rate of mass transfer across the interface.
This procedure is only valid if T;; and hence h
and A, are varying slowly with time compared
to the rate at which the bubble grows. For the
results presented in this paper the temperature
of the wall changes by about 10 per cent while
in same time the bubble volume increases many
times. The use of this simplification therefore
seems to be reasonable.

Again following Cooper and Lloyd [13] and
taking the liquid microlayer to be in the form
of frustrum of a cone of maximum height A, it is
an easy matter to calculate the change in
geometry of this frustrum by relating its
change in volume to the amount of mass
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evaporated by

Am,
*

AV, =
f oL

where the geometry is as defined in Fig. 3.

3. LIQUID TEMPERATURE DISTRIBUTION

The one dimensional temperature distri-
bution in a liquid surrounding a transiently
heated surface, derived from the heat conduction
equation is given by equation {4) from Carslaw
and Jaeger [9]). When the heat flux F, rather
than surface temperature T, is known, an
alternative solution also given in {9 is

AT, (D)= %?— {(at/n)‘* exp (— x?/4at)

- ;- erfc (x/Z(Gt)*)}' (16)

Since both of these forms are derived from heat
conduction considerations alone, the calculated
liquid temperature distribution becomes in-
creasingly unrepresentative as ¢ increases due
to the increasing effect of thermal convection.
Furthermore, in reality the temperature distri-
bution in liquid above a nucleation site will also
be affected by disturbances from adjacent active
nucleation sites and by the bubble itself.

The problem of predicting temperature distri-
butions during steady boiling is insoluble by
analytical methods and no attempt to solve it
numerically has been made in this study.
However, Marcus and Dropkin [14] have
attempted an empirical characterization of the
steady boiling temperature profile dependent
upon the heat flux at the solid surface, and this
would appear to be applicable to finite difference
bubble growth calculations for the steady
boiling situation.

4. THE NUMERICAL PROCEDURES

4.1 Initial conditions: number of elements
As stated before, initial conditions depend
largely upon the temperature of the nucleation

site at the start of bubble growth. Thus the size
of the site can be estimated from equation (1)
when the site temperature at bubble inception is
known. Although not strictly necessary, the
assumption that the bubble is initially hemi-
spherical in static equilibrium leads to a very
simple initial condition. Element points which
mark the annular element boundaries are
uniformly distributed over the previously pre-
scribed bubble shape or radius. Since we consider
only the case of axial symmetry, the element
points are distributed from j = 1 at the top of the
bubble to j= N at the edge of the hole as
shown in Fig. 1a. The number of element points
(N)is optional and although it may appear more
accurate to have a large number of element
points (i.e. small elements), there are certain
difficulties which preclude this, namely, as with
all numerical procedures we are limsted by both
computer accuracy and economy. If the elements
are small the small difference in mass transfer
across each element may be incorrectly com-
puted due to computer round off errors.
Differences in 6m of the order 10~ 2° are possible
in this type of procedure so it can be seen that
even with double precision computation, trun-
cation errors with small element calculations
may be appreciable. The desirability of limiting
computation time provides a further incentive
for limiting the number of element points.

From our computations a suitable range for
N would be between 10 and 20 depending upon
the initial size of the bubble. However the
problem associated with having too few elements
(i.e. inaccurate representation of bubble topo-
logy) is greatly reduced by the introduction of a
numerical surface movement of element points
to prevent bunching or non-equal element
spacing during computation. This is a simple
mathematical technique to ensure that after
each time step the independent movement of
elements does not result in unequal spacing. It is
achieved by rotating each element point about its
local radius of curvature R,(i,j) in such a
direction that the final distance between each
element is equalised.
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4.2 Numerical stability

As with many numerical solutions stability
of the computations is critically affected by the
mesh size, i.e. elemental size and magnitude of
the time step. The element size effect has been
discussed in 4.1 and now we consider the time
step, again with the intention of obtaining
optimum  computational efficiency and
numerical stability. The time step is calculated
here as a function of element point acceleration,
since equation (3} is most sensitive to the size
of the time step. The criterion we have success-
fully used is

d?R

for —5< 10°, At=5x10"%s
d*R 1077 \}

for —= > 10% =\ 35

or 47> 0°, Ar (dzR/dﬂ) s

where R is in cm. The time step increases as
acceleration d*R/dt* decreases maintaining
computational efficiency. This function produces
a time step magnitude in the order of 107%s
during maximum growth acceleration periods,
usually in the initial stages of bubble growth, and
was arrived at by running the computer pro-
gram with several time step functions until
stability was reached.

5. EXPERIMENTAL AND FINITE DIFFERENCE
COMPARISON

Bubble growth from a nucleation site on a
transiently heated stainless steel strip has been
measured by Yessin and Jeffers [7]. Two of their
results for liquid temperatures 90°C and 99°C at
atmospheric pressure are considered here. The
experimental conditions in both cases have
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been employed in the finite element computation
and are given in Table 1. along with the appro-
priate { value which was selected to give the best
agreement between the experimental and com-
puted results. A set of ten elements represents
the bubble surface in these numerical results
and the liquid temperature distribution is given
as a function of the measured temperature of the
heated surface Ty by equation (4).
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Fi1G. 4. Bubble growth T, = 90°C.

5.1.1 Bubble growth results. Figure 4 shows the
numerical bubble growth with and without mass

Table 1. Relevant experimental conditions {7}

T, Heated surface Nucleation Wall temperature Mass transfer
°C) temperature at site rise function factor
start of bubble diameter AT (°C)
growth (°C) {cm)
90 116 332 x 107* 62 x 103 50 x 1077
99 129 1-38 x 107* 367 x 10% 35 x 1070
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transfer from the film of liquid beneath the
bubble for T, = 90°C compared with that
obtained experimentally. A similar comparison
for T, _ = 99-C is shown in Fig. 5. Agreement
between the experimental and numerical results
with film evaporation is good over the range of
bubble growths compared, although this is

i of 1

I

S,

|

Bubble radius, r,, mm

® Experrmentat resutt [7]
@ Computed result (bose evop)

-3 5x.6’{
& Computed resuit({no base svap)

16° ] 1 1 J |
100 200 300 400 500

Time, pus

FiG. 5. Bubble growth T, = 99°C.

largely due to the arbitrary selection of a value
for { in equation (11). Interference from other
nucleating bubbles when > 05 x 1073
seconds from the start of bubble growth was a
limitation in the experimental measurement, but
according to photographic evidence in [7]
interference from other bubbles may well have
started earlier. In the numerical result, we must
recognise that the activity of other sites and the
increasing effect of thermal convection sets a
similar time limit for computational accuracy
and this accounts for the increasing discrepancy

in results with time. Good agreement in the
bubble growth comparison gives a degree of
confidence in the many other numerical results
such as volumetric and vapour mass growth
rates, dry out radius and liquid film temperature,
bubble pressure and acoustic emission in the
liquid above the bubble. Instantaneous accelera-

ll:)-s s r l0°
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107 16"
o
L)

. E
@ E
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3 ®
5 " T80 g
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E r ] @
m b

16° L 16°
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Time, pus

FiG. 6. Computed bubble volume and vapour mass with
time.

tion, velocity and local radius of curvature for
the bubble are also known but are more difficult
to summarize here. Increase in vapour mass
and bubble volume with time for T, = 90°C
and 99°C are plotted in Fig. 6. The ratio of the
dryout radius and bubble edge radius (rj/x,) is
plotted in Fig. 7 for the two bulk liquid tempera-
tures, and the computed results for the drop in
liquid film temperature are shown in Fig. 8.
Variation in computed bubble vapour pressure
Py, with time, for the two liquid temperatures is
shown in Fig. 9 normalized to the liquid surface
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pressure. The bubble is seen to grow in a
spherical manner in the computed results of
Fig.10afor T, = 90°Cand 10bfor T, _ = 99°C.
The bubble shape on collapse however is more
complicated and worthy of special explanation.

28T
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o
o

C 5L
o]

100 760
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Fi1G. 9. Computed variation in bubble vapour pressure with
time

5.1.2 Bubble shape during collapse. To study
the shape of the bubble during total collapse a
computation was carried out with the same
condition as for the T, = 90°C but with no
base evaporation (see Fig. 4) and with the
modification that after 2:0 x 10™*s growth, the
liquid temperature became equal to the bulk
conditions T, = 90°C everywhere. Thus the
event of convection cooling which would pre-
cipitate collapse in the real case was simulated
in a crude way. The resulting bubble shape
during collapse is extremely interesting. Figure
11 shows that the shape of the bubble becomes
highly non-spherical near to the completion of
the collapse phase, and in the centre region the
downward liquid velocity becomes very high.
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The unusual shape of the bubble does however
lead to an increasingly inaccurate numerical
result due to the fact that the radius R(1) at the

o8
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F1G. 10. Bubble shape during growth.

centre of the bubble is over estimated. The error
involved therefore has the effect of under
estimating the collapse velocity in that region.
This result is in agreement with Hammitt
{4, 15] and Barclay, Ledwidge and Cornfield [5]
who have studied the damage caused by
collapsing vapour bubbles-and observed highly
non-spherical bubble shapes. Hammitt con-
cludes that an enlarged pit forms at the
nucleation site due to the impulse of a high
velocity liquid jet produced during this type of
bubble collapse : we see the formation of this jet
in Fig. 11. The acoustic pressure in the liquid

above the bubble is also greatly affected by the
central concavity during collapse and is found
numerically to display totally different
characteristics to the noise during bubble
growth.
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008
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apProx HO4 Mg ™o

Nucieation
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FiG. 11. Computed bubble shape during collapse, T, =
90°C (no base evaporation).

5.2 Liquid pressure above the bubble

The water pressure at approximately 10 mm
directly above the nucleation site was calculated
during the bubble growth computation, and
this result provides information on how the
bubble noise relates to this type of growth or
collapse. Figure 12 shows this result for the
90°C and 99°C bulk liquid temperatures, and
although the pressure is plotted on a logarithmic
scale the large characteristic difference in noise
due to different subcooling conditions can be
seen easily.

The liquid acoustic pressure derived from the
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Rayleigh equation (3) is given by

: (7
APLgR(Jr=1)[APV+ %PLU =1
g

)]

where APy = Py — P, — 20/R; ;) During col-
lapse it is possible for any part of the bubble
surface to become concave to the liquid with the

"
10 - T

—
ek

Acoustic pressure in liquid 127mm above nucleation site, Pa

1
o 100
Time, us

FiG. 12. Computed bubble growth noise directly above the
nucleation site.

result that the local acoustic emission will be
greatly affected. As the surface becomes con-
cave R — 0 and R/r — 1-0, therefore AP, — AP,
and thus the upper limit of such a peak would be
APy and not infinity, as would occur during the
very last stages of bubble collapse according to
Rayleigh’s analysis. The collapsing bubble shape
does indeed show concavity in its later stages
(Fig. 11) and by plotting the liquid pressure
above the bubble, as in Fig. 13 we see the bubble

T. I

LEDWIDGE

noise characteristic of this type of collapse.
Until the start of coliapse the acoustic pressure
is characteristically the same as that shown for
T, =90°C in Fig. 12. In the Fig. 13 result,
however an arbitrary step change in liquid
temperature brings about collapse after 200 ps
and although the overall result may be some-
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Fi1c. 13. Bubble noise computed for growth and collapse
stages T,, = 90°C.

what artificial, it does serve to illustrate the
different type of noise signal during the two
different phases of bubble life. It follows that in
the case when the bubble wall oscillates from a
concave to a convex shape one might expect to
see a series of bubble noise peaks reaching a
maximum pressure level of

APL=Py—PL—20'/R'

6. CONCLUSIONS
Good agreement between experimental and
computed bubble growth in water bulk tempera-
tures of 90°C and 99°C at atmospheric pressure.
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has shown that the finite difference model can
successfully represent vapour bubble dynamics
under the prescribed experimental conditions.

The technique of matching one experimentally
determined parameter by a corresponding
numerical resuit has been shown to be a useful
way of determining theoretically, through the
finite difference method, a range of other
parameters for which experimental measure-
ment is too difficult. A further example of this
technique has already been carried out (Guy and
Ledwidge [16]), where the noise measured
during bubble growth was compared with that
computed numerically. The importance of em-
ploying the correct variable mass-transfer co-
efficient or a mean value which accurately
represents a mean of the initially transient
coefficient is emphasized. As yet there is no way
of theoretically determining a value for »(t) or #
but n may be found by trial and error. We note
with interest the fact that in our numerical results
the most appropriate values of { used in the mass
transfer equation (11) were 3-5 x 10~% for
T, = 99°Cand 5 x 10~2for T, _ = 90°C, which
compares with Theofanous et al. [12] who
found in their numerical results that the most
appropriate value for the mean mass-transfer
accommodation coefficient lay between 10~
and 5 x 1072, As pointed out earlier 7 is
different to the factor { which is designed to
account for interfacial liquid temperature
changesaswellasembracing theaccommodation
coefficient. It can be argued therefore that in
sub-cooled bubble growth, the increase in
liquid interfacial temperature on the con-
densation surface balances to some extent the
decrease in temperature at the evaporation
surface.

The numerical computations also show that
evaporation from the liquid film at the base of
the bubble cannot be neglected particularly

when bubble growth becomes well established.
Indeed, for the highly sub-cooled bubble growth
after about 100 us growth time, the continued
growth of the bubble relies entirely upon
evaporation from the base of the bubble. It is
anticipated that future development of this
method of vapour bubble analysis will allow
accurate simulation of temperature fluctuations
at the heated surface Ty, thus providing greate:
understanding of several heat transfer problems
at present under study, e.g. burnout on nuclear
fuel elements.
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APPROCHE NUMERIQUE DE LADYNAMIQUED'UNE BULLE DE VAPEUR NON SPHERIQUE

Résumé—Une analyse explicite aux différences finies est appliquée a la croissance et a la disparition d'une

bulle de vapeur dans de I'eau sous-refroidie. On suppose que seul est important le transfert de masse &

travers l'interface liquide—vapeur et que le transfert thermique peut étre négligé. Les résultats de ce calcul

comparés aux données de I'expérience, sont en bon accord pour des sous-refroidissements de 1°C et 10°C.

Pour ces conditions expérimentales les analyses montrent que les bulles croissent de fagon & peu prés
sphériques mais dégénérent de fagon trés éloignée de la forme sphérique.

EINE NUMERISCHE NAHERUNG ZUR NICHT-SPHARISCHEN BLASENDYNAMIK

Zusammenfassumg-—Es wurdeein explizites Differenzenverfahren angewandt zur Berechnung von Wachstum
und Kotilaps einer Dampfiblase in unterkithitem Wasser. Dabei wurde angenommen, dass nur der Massen-
transport iiber die Flissigkeits-Dampf-Grenze bedeutsam ist, wihrend der Wirmeiibergang vernachlissigt
werden kann. Die Ergebnisse dieser rechnerischen Untersuchung werden mit experimentelien Ergebnissen
aus der Literatur verglichen und zeigen gute Ubereinstimmung bei 1 K und 10 K Unterkiihlung.
Fir die experimentellen Bedingungen zeigt dic Untersuchung, dass die Blase in angendhert kugeliger
Form wiichst, aber in stark asphirischer Gestalt zusammenbricht.

YUCJEHHBIN AHAJIN3 IMHAMUKN HECOEPUYECKUX
[IY3bIPEN IIAPA

ARHOTANMA—IBHAA KOHEUHO-DASHOCTHAA CXeMa HCHO0Jb3yeTcA AJIA aHAIu3a pocra M
CIMSHMA Ny3sipell mapa B HEAOTPETOM MKUIKOCTH (BOJe). YUHTHBAETCA TOJBHO MOMEpeuHEtH
IepeHOC MACCH Yepes NOBEPXHOCT Pasiesa GRUJKOCTb-Aap», A TeNI000MenoM ripeHedperaor.
PeayabTaThl 9TOT0 4HCIEHHOrO AHANU3A CPABRIBAKTCA C HKCMEPHMEHTATBLHEIMHM 1aHHBIMU,
onyGIMKOBAHHHIMI B IMTepaType, NpUUeM CpaBHeHMe 110Ka3ajo Xopoulee COBIAJeHHe NDU
nenorpese or 1°C o 10°C.

Jaa paccMaTpuBaeMHLX BSKCHEPUMEHTAIBHBIX YCJOBMA AHANH3 [OKA3LBAET, 4TO POCT
My3Hpell MOMHO NPUOTKEHHO NMPEACTABMTE C OMOLLLI0 CHEPHUECHOR MOIENH, A CANAHME

nyswpelt B BrICHIEl cTenmeHy HecdepudHo.



